Сергей Котов, главный инженер проекта светотехнической компании HELIOCITY
Коэффициент пульсации освещенности в осветительных установках. Метод расчета
Пульсации светового потока возникают при питании источников света переменным или импульсным током. Человек зрительно различает пульсации светового потока с частотой, меньшей критической частоты слияния мельканий, лежащей в диапазоне от 35 до 60 Гц в зависимости от области сетчатки глаза, воспринимающей излучение: для фовеальной области КЧСМ составляет 40…55 Гц, для парафовеальной она возрастает до 55…60 Гц, на крайней периферии снижается до 35…40 Гц. Таким образом, пульсации светового потока сильнее заметны периферическим зрением.
Данная статья представляет собой лишь теоретическую часть, в которойописывается метод расчета коэффициента пульсации освещенности. Вторая часть статьи — практическая и представляет собой онлайн калькулятор коэффициента пульсации освещенности для осветительной установки на светильниках с различными источниками света.
Видимые глазом пульсации вызывают явное раздражение, но также отрицательное влияние на зрительную работоспособность и нервную систему оказывают неразличимые органом зрения пульсации светового потока, имеющие частоту до 300 Гц. К наиболее опасным последствиям высоких пульсаций светового потока относится возникновение стробоскопического эффекта – иллюзии неподвижности или замедленного движения вращающихся объектов, что может привести к производственным травмам. Повышенная зрительная утомляемость и опасность травматизма диктуют необходимость нормировать коэффициент пульсации светового потока, который в итоге и влияет на коэффициент пульсации освещенности на объекте Кп.
Коэффициент пульсации освещенности: термины и определения
Коэффициент пульсации освещенности — один из качественных показателей внутренних осветительных установок, регламентируемый СП52.13330.2011, а также рядом отраслевых стандартов, санитарных правил и норм. По определению коэффициент пульсации освещенности – критерий оценки относительной глубины колебаний освещенности в осветительной установке в результате изменения во времени светового потока источников света при их питании переменным током. В зависимости от разряда зрительной работы, коэффициент пульсаций освещенности ограничивается значениями, не превышающими 10%, 15% или 20% [1].
Нижнее значение коэффициента пульсации было выбрано исходя из возможности его реализации во второй половине XX века. Верхнее значение связано с вероятностью возникновения стробоскопического эффекта при Кп > 20%. В помещениях с дисплеями коэффициент пульсаций освещенности не должен превышать 5% [2]. Коэффициент пульсации освещенности не ограничивается для помещений с периодическим пребыванием людей, при отсутствии в них условий для возникновения стробоскопического эффекта.
Коэффициент пульсации освещенности возрастает при регулировании светового потока источников света с помощью диммеров, работающих по принципу широтно-импульсной модуляции (ШИМ) на частоте до 300 Гц
При питании источников света переменным током промышленной частоты (50 Гц) частота пульсаций светового потока определяется её удвоенным значением и составляет 100 Гц. Наличие таких пульсаций невозможно определить «на глаз», для их выявления применяются измерительные приборы – пульсметры, часто совмещаемые с люксметрами. В настоящее время данные приборы получают широкое распространение, в 2012 году был введён стандарт, содержащий перечень рекомендуемых средств измерения и описывающий, как измерять коэффициент пульсации освещенности Кп [3].
Коэффициент пульсации различных источников света
Высокий коэффициент пульсации освещенности (свыше 30%) характерен для осветительных установок, в которых применяются светильники с разрядными лампами и электромагнитными ПРА, подключенные к однофазной линии питания [4]. Вопреки сложившемуся мнению, пульсации светового потока свойственны в том числе и лампам накаливания с Кп до 15% при подключении к одной фазе). Коэффициент пульсации освещенности на объектах со светодиодными источниками света зависят от схемотехнического решения их блоков питания (драйверов): если с целью удешевления конечного продукта на выходе схемы вместо постоянного тока выдаётся выпрямленный ток промышленной частоты, коэффициент пульсации может достигать порядка 30%. В связи с этим рекомендуется запрашивать у производителей или поставщиков светодиодных светильников техническую информацию по пульсациям светового потока для каждого конкретного продукта. Также коэффициент пульсации освещенности возрастает при регулировании светового потока источников света с помощью диммеров, работающих по принципу широтно-импульсной модуляции (ШИМ) на частоте до 300 Гц.
Рекомендуется запрашивать у производителей или поставщиков светодиодных светильников техническую информацию по пульсациям светового потока для каждого конкретного продукта
Один из способов снижения коэффициента пульсации в осветительных установках переменного тока – применение электронных ПРА с частотой питания от 400 Гц. При частоте питания свыше 5 кГц Кп составляет менее 1%. Данный способ эффективен для люминесцентных и компактных люминесцентных ламп, т.к. их применение с электронными ПРА стало практически повсеместным ввиду очевидных преимуществ и относительно невысокой стоимости решения. Частота питания современных ЭПРА для люминесцентных ламп – от 25 кГц. Ранее для снижения Кп в осветительных установках с многоламповыми люминесцентными светильниками применялись электромагнитные ПРА, работающие по схеме с расщеплённой фазой, обеспечивающей питание одной части ламп в светильнике отстающим током, другой – опережающим.
Разрядные лампы высокого давления (ДРЛ, ДРИ, ДНаТ) применяются, как правило, в одноламповых светильниках, поэтому подключение по схеме с расщеплённой фазой для них является неактуальным. Применение РЛВД с электронными ПРА не приводит к существенному снижению Кп ввиду относительно низкой частоты выходного тока (порядка 135 Гц), ограниченной физическими особенностями работы горелок ламп.
Наиболее распространённый способ снижения Кп для РЛВД в осветительных установках с трёхфазными групповыми линиями – так называемая расфазировка – поочерёдное присоединение светильников к разным фазам сети. Максимальное снижение Кп достигается при установке в одной точке двух или трёх светильников, питаемых от разных фаз.
В таблице 1 приводятся значения Кп для основных типов источников света, установленных в одной точке при питании от одной, двух или трёх фаз.
Таблица 1. Значения коэффициента пульсаций для источников света, установленных в одной точке и подключенных к 1, 2 или 3 фазам
Тип источника света | Коэффициент пульсации, % | ||
1 фаза | 2 фазы | 3 фазы | |
Лампа накаливания | 10…15 | 6…8 | 1 |
Люминесцентные лампы с ЭмПРА: ЛБ (цветность 640) ЛД (цветность 765) |
– 34 55 |
– 14,4 23,3 |
– 3 5 |
Дуговые ртутные лампы (ДРЛ) | 58 | 28 | 2 |
Металлогалогенные лампы (ДРИ) | 37 | 18 | 2 |
Натриевые лампы высокого давления (ДНаТ) | 77 | 37,7 | 9 |
Данное планирование расфазировки является идеальным, но значительно чаще встречается применение одного светильника в точке с поочерёдным соединением соседних светильников в ряду к разным фазам сети, реже – поочерёдное соединение соседних рядов светильников к разным фазам.
Оценить эффективность применения расфазировки в цепях переменного тока промышленной частоты с целью снижения коэффициента пульсации в осветительных установках общего освещения со светильниками с разрядными лампами и электромагнитными ПРА можно с помощью предлагаемого метода расчёта, основанного на требованиях, предъявляемых при измерении Кп и инженерном методе расчёта Кп по таблицам [4]. Данный метод может применяться для расчёта Кп в осветительных установках с металлогалогенными лампами (например, серии HPI Plus), дуговыми ртутными лампами (ДРЛ) и люминесцентными лампами типа ЛБ или ЛД и их зарубежных аналогов – ламп цветности 640 и 765 соответственно.
Коэффициент пульсации освещенности: алгоритм вычисления
1. Моделирование осветительной установки в расчётной программе.Необходимые исходные данные: габариты помещения, коэффициенты отражения его поверхностей, наличие затеняющих объектов, схема и высота установки светильников, высота плоскости нормируемой освещённости). Наиболее распространённой расчётной программой является DIALux, поэтому методика расчёта будет рассматриваться на его примере.
2. Распределение светильников по фазам согласно электрическому проекту или схеме. Ввиду того, что в программе DIALux расчёты проводятся по сценам освещения, для удобства получения результатов следует добавить светильники каждой фазы к соответствующим элементам управления (Фаза A, Фаза B, Фаза C), которые затем необходимо добавить к соответствующим сценам освещения (Фаза A, Фаза B, Фаза C). Либо можно создать отдельные расчётные файлы со светильниками от каждой фазы.
3. Определение минимального количества квадратов расчётной сетки. Минимальное количество квадратов расчётной сетки определяется исходя из размеров помещения и высоты подвеса светильников над нормируемой рабочей поверхностью. Минимальное количество квадратов расчётной сетки N1 в квадратном помещении определяется по таблице 2 в соответствии с индексом помещения \( i \):
Формула расчета индекса помещения для последующего расчета коэффициента пульсации освещенности:
\[ i=\frac{a\cdot b}{h0\cdot (a+b)}\qquad(1) \]
Где:
a и b – размеры сторон помещения, м;
h0 – высота подвеса светильников над рабочей поверхностью, м.
Таблица 2. Минимальное количество квадратов расчётной сетки для квадратного помещения
Индекс помещения i | Минимальное количество квадратов расчётной сетки N1 |
Менее 1 | 4 |
От 1 до 2 включительно | 9 |
От 2 до 3 включительно | 16 |
Свыше 3 | 25 |
Как правило, помещения имеют неквадратную форму. Минимальное количество квадратов расчётной сетки N для неквадратного помещения рассчитывается по формуле:
Формула расчета минимального количества квадратов расчётной сетки N для неквадратного помещения:
\[ N=N1\frac{S_п}{S_к}\qquad(2) \]
Где:
Sп – площадь помещения, м;
Sк – площадь квадрата со стороной, равной наименьшей стороне помещения, м.
4. Создание сетки расчётных точек освещённости.
Расстановка контрольных точек расчёта освещённости производится в центре каждого квадрата расчётной сетки. При размещении контрольных точек расчёта освещённости на плане помещения их сетка не должна совпадать с сеткой размещения светильников. В случае совпадения сеток число контрольных точек на плане помещения следует увеличить. При расположении в помещении крупногабаритного оборудования контрольные точки не должны располагаться на оборудовании. Если контрольные точки попадают на оборудование, сетку контрольных точек следует сделать более частой и исключить точки, попадающие на оборудование.
5. Определение освещённости в контрольных точках для каждой фазы с помощью расчётной программы.
6. В каждой точке максимальное из значений освещённости принимается равным 100%, значения освещённости от светильников оставшихся фаз выражаются в процентах от максимального значения.
7. По результатам п. 6 для каждой контрольной точки определяется значение Кпоуi в соответствии с типом источника света по таблице 3, 4 или 5. Если расчёт производится для двухфазной системы, доля освещённости от третьей фазы принимается равным 0%.
EA, EB, EC — освещённости в контрольных точках от светильников, подключенных к соответствующим фазам (A, B, C).
Таблица 3. Значения Кпоуi для ламп ДРИ
EB/EA, % | ||||||||||||
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||
EC/EA, % | 0 | 100.0 | 88.0 | 79.0 | 71.5 | 66.0 | 61.5 | 58.0 | 54.5 | 52.0 | 50.5 | 49.0 |
10 | 88.0 | 76.0 | 68.0 | 61.5 | 57.0 | 53.0 | 50.0 | 47.5 | 45.0 | 43.4 | 42.5 | |
20 | 79.0 | 68.0 | 59.0 | 53.5 | 49.0 | 45.5 | 42.5 | 40.0 | 38.5 | 37.5 | 36.0 | |
30 | 71.5 | 61.5 | 53.5 | 46.5 | 42.0 | 39.0 | 36.5 | 34.5 | 33.0 | 31.5 | 31.0 | |
40 | 66.0 | 57.0 | 49.0 | 42.0 | 36.5 | 33.0 | 31.0 | 29.5 | 27.5 | 27.0 | 26.5 | |
50 | 61.5 | 53.0 | 45.5 | 39.0 | 33.0 | 28.5 | 26.5 | 24.5 | 23.5 | 22.0 | 21.5 | |
60 | 58.0 | 50.0 | 42.5 | 36.5 | 31.0 | 26.5 | 22.0 | 23.0 | 22.0 | 21.0 | 20.0 | |
70 | 54.5 | 47.5 | 40.0 | 34.5 | 29.5 | 24.5 | 23.0 | 19.0 | 18.0 | 17.0 | 16.4 | |
80 | 52.0 | 45.0 | 38.5 | 33.0 | 27.5 | 23.5 | 22.0 | 18.0 | 14.9 | 14.1 | 13.4 | |
90 | 50.5 | 43.4 | 37.5 | 31.5 | 27.0 | 22.0 | 21.0 | 17.0 | 14.1 | 11.2 | 10.6 | |
100 | 49.0 | 42.5 | 36.0 | 31.0 | 26.5 | 21.5 | 20.0 | 16.4 | 13.4 | 10.6 | 8.0 |
Таблица 4. Значения Кпоуi для ламп ДРЛ
EB/EA, % | ||||||||||||
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||
EC/EA, % | 0 | 100.0 | 88.0 | 79.0 | 71.5 | 66.0 | 61.5 | 58.0 | 54.5 | 52.0 | 50.5 | 49.0 |
10 | 88.0 | 76.0 | 68.0 | 61.5 | 57.0 | 53.0 | 50.0 | 47.5 | 45.0 | 43.4 | 42.5 | |
20 | 79.0 | 68.0 | 59.0 | 53.5 | 49.0 | 45.5 | 42.5 | 40.0 | 38.5 | 37.5 | 36.0 | |
30 | 71.5 | 61.5 | 53.5 | 46.5 | 42.0 | 39.0 | 36.5 | 34.5 | 33.0 | 31.5 | 31.0 | |
40 | 66.0 | 57.0 | 49.0 | 42.0 | 36.5 | 33.0 | 31.0 | 29.5 | 27.5 | 27.0 | 26.5 | |
50 | 61.5 | 53.0 | 45.5 | 39.0 | 33.0 | 28.5 | 26.5 | 24.5 | 23.5 | 22.0 | 21.5 | |
60 | 58.0 | 50.0 | 42.5 | 36.5 | 31.0 | 26.5 | 22.0 | 18.0 | 16.0 | 16.0 | 15.4 | |
70 | 54.5 | 47.5 | 40.0 | 34.5 | 29.5 | 24.5 | 18.0 | 14.5 | 12.7 | 11.7 | 11.5 | |
80 | 52.0 | 45.0 | 38.5 | 33.0 | 27.5 | 23.5 | 16.0 | 12.7 | 9.9 | 8.4 | 7.9 | |
90 | 50.5 | 43.4 | 37.5 | 31.5 | 27.0 | 22.0 | 16.0 | 11.7 | 8.4 | 6.0 | 4.9 | |
100 | 49.0 | 42.5 | 36.0 | 31.0 | 26.5 | 21.5 | 15.4 | 11.5 | 7.9 | 4.9 | 2.6 |
Таблица 5. Значения Кпоуi для люминесцентных ламп
EB/EA, % | ||||||||||||
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||
EC/EA, % | 0 | 100.0 | 88.0 | 79.0 | 71.5 | 66.0 | 61.5 | 58.0 | 54.5 | 52.0 | 50.5 | 49.0 |
10 | 88.0 | 76.0 | 68.0 | 61.5 | 57.0 | 53.0 | 50.0 | 47.5 | 45.0 | 43.4 | 42.5 | |
20 | 79.0 | 68.0 | 59.0 | 53.5 | 49.0 | 45.5 | 42.5 | 40.0 | 38.5 | 37.5 | 36.0 | |
30 | 71.5 | 61.5 | 53.5 | 46.5 | 42.0 | 39.0 | 36.5 | 34.5 | 33.0 | 31.5 | 31.0 | |
40 | 66.0 | 57.0 | 49.0 | 42.0 | 36.5 | 33.0 | 31.0 | 29.5 | 27.5 | 27.0 | 26.5 | |
50 | 61.5 | 53.0 | 45.5 | 39.0 | 33.0 | 28.5 | 26.5 | 24.5 | 23.5 | 22.0 | 21.5 | |
60 | 58.0 | 50.0 | 42.5 | 36.5 | 31.0 | 26.5 | 22.0 | 18.0 | 16.0 | 16.0 | 15.4 | |
70 | 54.5 | 47.5 | 40.0 | 34.5 | 29.5 | 24.5 | 18.0 | 14.5 | 12.7 | 11.7 | 11.5 | |
80 | 52.0 | 45.0 | 38.5 | 33.0 | 27.5 | 23.5 | 16.0 | 12.7 | 9.9 | 8.4 | 7.9 | |
90 | 50.5 | 43.4 | 37.5 | 31.5 | 27.0 | 22.0 | 16.0 | 11.7 | 8.4 | 6.0 | 4.9 | |
100 | 49.0 | 42.5 | 36.0 | 31.0 | 26.5 | 21.5 | 15.4 | 11.5 | 7.9 | 4.9 | 2.6 |
8. По результатам п. 7 для каждой контрольной точки определяется значение Кпi по формуле:
Коэффициент пульсации источника света Кпi, формула расчета:
\[ K_{пi}=K_{пoyi}\cdot K_{пis}\qquad(3) \]
Где:
Kпis – значение коэффициента пульсации освещенности применяемого источника света при подключении к одной фазе, определяемое по таблице 1.
9. Для удобства полученные результаты сводятся в таблицу 6.
Таблица 6: Пример результатов расчёта коэффициента пульсации
№ расчётной точки i | Освещённость от светильников фазы A | Освещённость от светильников фазы B | Освещённость от светильников фазы C | Кп_оуi | Кпi |
1 | 200 лк (100%) | 100 лк (50%) | 50 лк (25%) | 42,3% | 15,6% |
10. Коэффициент пульсации освещенности Кп определяется как среднее арифметическое всех значений Кпi, полученных в п. 9.
\[ K_п=\frac{1}{N}\sum^{N}_1K_{пi}\qquad(4) \]
Где:
N – количество расчётных точек.
Коэффициент пульсаций освещенности для конкретного помещения. Пример расчета
Рассмотрим применение данного метода на конкретном примере: производственный цех размерами 60 х 18 х 10 м, высота установки светильников 9 м, светильники устанавливаются на поперечных балках с шагом 6 м, нормируемая средняя горизонтальная освещённость на уровне 0,8 м: 200 лк, разряд зрительных работ: IV (средней точности, коэффициент пульсаций < 20%).
1. Моделирование осветительной установки в DIALux
Коэффициенты отражения поверхностей в промышленном помещении выбираются в соответствии с одним из наименее благоприятных возможных условий: потолок – стекло (6%), стены – бетон (27%), пол – цемент (27%). Коэффициент запаса (в DIALux – коэф. уменьшения) принимается равным 0,71.
Выбранный тип светильников: подвесной BOX LAMA Q 250W с широкосимметричным отражателем 48D и защитным стеклом с металлогалогенной лампой HPI Plus 250/743 BU. Для обеспечения нормируемой освещённости на рабочей поверхности потребуется 27 светильников, установленных в 3 ряда с шагом 6 м (по 9 светильников в ряду). Результаты светотехнических расчётов приведены на рис. 1 ниже.
2. Распределение светильников по фазам
В рассматриваемом примере будет использовано распределение светильников по фазам в соответствии со схемой:
A – B – C – A – B – C – A – B – C
B – C – A – B – C – A – B – C – A
C – A – B – C – A – B – C – A – B
Выделение светильников каждой фазы для присоединения к соответствующим элементам управления в DIALux удобнее производить сверху вниз, слева направо (см. рис. 2).
Светильники каждой фазы необходимо присоединить к соответствующим элементам управления. Для удобства элементы управления следует переименовать в соответствии с фазами A, B, C.
Затем каждый элемент управления присоединяется к соответствующей сцене освещения (см. рис. 3). Для удобства сцены освещения целесообразно переименовать в соответствии с фазами A, B, C.
3. Определение минимального количества квадратов расчётной сетки (см. рис. 4).
Определение индекса помещения в соответствии с формулой (1):
\[ i=\frac{a\cdot b}{h0\cdot (a+b)}=\frac{60\cdot 18}{8,2\cdot (60+18)}=1,69 \]
Минимальное количество квадратов расчётной сетки N1 для квадратного помещения определяется по таблице 2 в соответствии с индексом помещения i: 9. Ввиду того, что помещение имеет прямоугольную форму, минимальное количество квадратов расчётной сетки N рассчитывается по формуле (2):
\[ N=N1\frac{S_п}{S_к}=9\frac{60\cdot 18}{18\cdot 18}=30 \]
4. Создание сетки расчётных точек освещённости. Площадь помещения составляет 1080 м2, минимальное количество квадратов расчётной сетки – 30 шт. При данных параметрах максимальная площадь квадрата расчётной сетки составляет 36 м2, т.е. 6х6 м. Контрольные точки расчёта освещённости следует располагать в центре квадратов расчётной сетки.
5. Определение освещённости в контрольных точках для каждой фазы. Для наглядного представления результатов расчёта в DIALux следует отметить пункт «Расчётные точки (обзор результатов)» для сцен освещения каждой фазы. Значения освещённости от каждой фазы в 30 контрольных точках заносятся в таблицу (см. таблицу 7 ниже).
6. В каждой из 30 точек максимальное значение освещённости принимается равным 100%, значения освещённости от светильников оставшихся фаз выражаются в процентах от максимального значения.
Например, в точке 1 освещённость от фазы А составляет 46 лк, от фазы B – 49 лк, от фазы C – 18 лк. Максимальной является освещённость, создаваемая светильниками фазы B – 49 лк, данное значение принимается равным 100%. Освещённость от фазы A составляет 94% от максимальной освещённости, от фазы C – 37%. Процентные соотношения заносятся в таблицу (см. таблицу 7 ниже).
7. По результатам п. 6 для каждой контрольной точки определяется коэффициент пульсации осветительной установки Кп_оуi по таблице 3, т.к. применяемый источник света — металлогалогенная лампа.
Например, в точке 1 Кпоу1 определяется по таблице 3 на пересечении значений 94% и 37% и равен 28,3% (точное значение получено с помощью интерполяции табличных данных). Полученные значения Кпоуi заносятся в таблицу (см. таблицу 7 ниже).
8. По результатам п. 7 для каждой контрольной точки определяется значение коэффициента пульсаций источника света Кпi по формуле 3. Для металлогалогенных Кпис = 37% (по таблице 1).
Например, для точки 1.
Коэффициент пульсации освещенности:
\[ K_{п1}=K_{пoy1}\cdot K_{пис}=28,3\%\cdot 37\%=10,5\% \]
Полученные значения Кпi заносятся в таблицу (см. таблицу 7).
9. Полученные результаты сводятся в таблицу 7:
Таблица 7: Результаты расчётов коэффициента пульсаций Кп
№ расчётной точки | Освещённость от светильников фазы A | Освещённость от светильников фазы B | Освещённость от светильников фазы C | Кпоуi | Кпi |
1 | 46 лк (94%) | 49 лк (100%) | 18 лк (37%) | 28.3 | 10.5 |
2 | 42 лк (84%) | 50 лк (100%) | 49 лк (98%) | 12.4 | 4.6 |
3 | 25 лк (48%) | 35 лк (67%) | 52 лк (100%) | 26 | 9.6 |
4 | 56 лк (77%) | 73 лк (100%) | 52 лк (71%) | 18 | 6.7 |
5 | 76 лк (97%) | 78 лк (100%) | 77 лк (99%) | 8.9 | 3.3 |
6 | 55 лк (74%) | 53 лк (72%) | 74 лк (100%) | 18.3 | 6.8 |
7 | 69 лк (92%) | 65 лк (87%) | 75 лк (100%) | 12 | 4.5 |
8 | 86 лк (93%) | 92 лк (100%) | 87 лк (95%) | 10.4 | 3.8 |
9 | 75 лк (100%) | 64 лк (85%) | 70 лк (93%) | 12.3 | 4.6 |
10 | 77 лк (100%) | 70 лк (91%) | 66 лк (86%) | 12.4 | 4.6 |
11 | 88 лк (95%) | 88 лк (95%) | 93 лк (100%) | 10.2 | 3.8 |
12 | 71 лк (92%) | 77 лк (100%) | 66 лк (86%) | 12.3 | 4.6 |
13 | 66 лк (86%) | 77 лк (100%) | 70 лк (91%) | 12.4 | 4.6 |
14 | 93 лк (100%) | 88 лк (95%) | 88 лк (95%) | 10.2 | 3.8 |
15 | 66 лк (86%) | 70 лк (91%) | 77 лк (100%) | 12.4 | 4.6 |
16 | 70 лк (91%) | 66 лк (86%) | 77 лк (100%) | 12.4 | 4.6 |
17 | 88 лк (95%) | 93 лк (100%) | 88 лк (95%) | 10.2 | 3.8 |
18 | 77 лк (100%) | 66 лк (86%) | 70 лк (91%) | 12.4 | 4.6 |
19 | 77 лк (100%) | 70 лк (91%) | 66 лк (86%) | 12.4 | 4.6 |
20 | 88 лк (95%) | 88 лк (95%) | 93 лк (100%) | 10.2 | 3.8 |
21 | 70 лк (91%) | 77 лк (100%) | 66 лк (86%) | 12.4 | 4.6 |
22 | 64 лк (85%) | 75 лк (100%) | 70 лк (93%) | 12.3 | 4.6 |
23 | 92 лк (100%) | 86 лк (93%) | 87 лк (95%) | 10.4 | 3.8 |
24 | 65 лк (87%) | 69 лк (92%) | 75 лк (100%) | 12 | 4.5 |
25 | 53 лк (72%) | 55 лк (74%) | 74 лк (100%) | 18.3 | 6.8 |
26 | 78 лк (100%) | 76 лк (97%) | 77 лк (99%) | 8.9 | 3.3 |
27 | 73 лк (100%) | 57 лк (78%) | 52 лк (71%) | 17.9 | 6.6 |
28 | 35 лк (67%) | 25 лк (48%) | 52 лк (100%) | 26 | 9.6 |
29 | 50 лк (100%) | 42 лк (84%) | 49 лк (98%) | 12.4 | 4.6 |
30 | 49 лк (100%) | 46 лк (94%) | 18 лк (37%) | 28.3 | 10.5 |
Как видно из таблицы 7, при отсутствии затеняющих объектов в помещениях с симметричным расположением сетки светильников каждой фазы относительно сетки расчётных точек, значения освещённостей в расчётных точках также имеют симметрию (в рассматриваемом случае – только в поперечной плоскости). Следовательно, для расчёта Кп с достаточной точностью можно использовать половину расчётных точек (с 1 по 15 или с 16 по 30).
10. Коэффициент пульсации Кп определяется как среднее арифметическое всех значений Кпи, полученных в п. 9.
Коэффициент пульсации освещенности. Формула расчета:
\[ \begin{eqnarray*} K_p=\frac{1}{N}\sum^{N}_1K_{pi}=\frac{1}{30}(10,5+4,6+9,6+6,7+3,3+6,8+\\ 4,5+3,8+4,6+4,6+3,8+4,6+\\4,6+3,8+4,6+4,6+3,8+4,6+\\4,6+3,8+4,6+4,6+3,8+4,5+\\6,8+3,3+6,6+9,6+4,5+10,5)=\\=5,3\% \end{eqnarray*} \]
Таким образом, коэффициент пульсации освещенности в данном промышленном помещении равен 5,3%, что значительно ниже нормируемого значения 20%.
Чем меньше коэффициент пульсации освещенности осветительной установки в зависимости от рассматриваемой схемы, тем сложнее и дороже будет её реализация с точки зрения стоимости монтажных работ и электротехнических материалов
Предложенная в примере схема расфазировки является одной из наиболее оптимальных. Рассмотрим также ряд схем подключения светильников в трёхфазной сети:
Подключение поперечных рядов к отдельным фазам: Кп = 10,9%.
A – B – C – A – B – C – A – B – C
A – B – C – A – B – C – A – B – C
A – B – C – A – B – C – A – B – C
Подключение продольных рядов к отдельным фазам: Кп = 13,6%.
A – A – A – A – A – A – A – A – A
B – B – B – B – B – B – B – B – B
C – C – C – C – C – C – C – C – C
Подключение светильников одной фазы в шахматном порядке для обеспечения равномерного распределения освещённости в дежурном режиме работы осветительной установки (светильники фазы А): Кп = 13,3%.
A – B – A – C – A – B – A – C – A
B – A – C – A – B – A – C – A – B
A – B – A – C – A– B – A – C – A
Подключение светильников к двум фазам в каждом продольном ряду трёхфазной сети: Кп = 8,2%.
A – B – A – B – A – B – A – B – A
B – C – B – C – B – C – B – C – B
C – A – C – A – C – A – C – A – C
Чем меньше коэффициент пульсации освещенности осветительной установки в зависимости от рассматриваемой схемы, тем сложнее и дороже будет её реализация с точки зрения стоимости монтажных работ и электротехнических материалов (щитов управления, пускателей, автоматов, кабелей, лотков, монтажных коробок и др.).
В связи с этим целесообразно рассматривать несколько вариантов схем расфазировки и выбирать наиболее простой из удовлетворяющих нормируемым требованиям.
Программа расчета коэффициента пульсации освещенности
Автором статьи совместно с Андреем Леготиным (iesviewer@gmail.com) была разработана программа, производящая автоматизированный расчёт пп. 3, 6 – 10. Исходными данными являются габариты помещения, высота подвеса светильников относительно расчётной плоскости, тип источников света и значения освещённости в контрольных точках, полученные в расчётной программе.
Программа производит расчёт индекса помещения, автоматически предлагает минимальное количество расчётных точек (возможен ручной ввод), рассчитывает коэффициент пульсации освещенности для металлогалогенных, ртутных и люминесцентных ламп с электромагнитными ПРА в каждой контрольной точке, а также коэффициент пульсации освещенности всей осветительной установки. Программа доступна в режиме онлайн на нашем сайте www.heliocity.ru/pulsacii-osveshchennosti/
СПИСОК ЛИТЕРАТУРЫ:
1. СП 52.13330.2011 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*.
2. СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы».
3. ГОСТ Р 54945-2012 Здания и сооружения. Методы измерения коэффициента пульсации освещенности.
4. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. – 3-е изд., перераб. и доп. – М.: Знак. – 972 с: ил.